Implications of Stress State Uncertainty on Caprock and Well Integrity (FEW0191)

Presenter: Josh White and Susan Carroll Team: Pratanu Roy, Joe Morris, Stuart Walsh, Wei Wang (LLNL), Malin Torsæter (SINTEF)

Lawrence Livermore National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

LLNL-PRES-665424

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Project Objectives

Task 3.1– Improve assessment of thermal-hydraulic fracturing risk during CO₂ injection

Task 3.2 – Illustrate modes of well failure caused by heating and cooling

Program Goals and Benefits

- This project meets the Carbon Storage Program goals to develop and validate technologies to ensure 99 % storage permanence.
- This project develops and validates geomechanical computational tools needed to avoid caprock and wellbore failure during CO₂ injection.
- Approach
 - GEOS multi-scale, multi-physics simulator developed at LLNL
 - Caprock Integrity
 - Update key physics to bound operational practices that might fracture the caprock during CO₂ injection
 - Test simulation results against data from the In Salah CO₂ demonstration
 - Wellbore Integrity
 - Update key physics to bound the impact of thermal stresses on well integrity
 - Constrain simulations against thermal cycling experiments conducted by SINTEF
 - Apply model to physical conditions reflecting CO₂ operations
- Success is defined as a methodology to define
 - · pressure thresholds to maintain caprock integrity and
 - temperature ranges that yield minimum damage in the wellbore.

Task 3.1 – Improve assessment of thermal-hydraulic fracturing risk during CO₂ injection

Motivation: Injection of cold CO_2 at high pressure can potentially fracture reservoir rocks and caprock seals.

In Salah Case Study: Bottom hole pressure and estimated fracture pressure range at KB-502.

Task 3.1 – Improve assessment of thermal-hydraulic fracturing risk during CO₂ injection

In Salah Case Study: Velocity anomalies seen in 3D/4D seismic. Features run perpendicular to minimum horizontal stress, and may indicate fracturing in the reservoir and lowermost caprock [White et al. 2014].

New modeling approach to allows arbitrarily oriented fractures to be embedded in a standard reservoir simulator

We solve for fracture pressure, fracture aperture, matrix pressure, and matrix displacement in a tightly-coupled fashion.

New modeling approach to allows arbitrarily oriented fractures to be embedded in a standard reservoir mesh

Simple test problem with a pressurized crack on a fixed background mesh. Computed response is independent of crack orientation, as expected.

Lawrence Livermore National Laboratory

Task Status – We are currently calibrating an In Salah model, using available data as constraints.

"Static" fracture model used to calibrate rock properties against surface deformation data. Next step will use a propagating fracture to look at the time-evolution of the system.

Constraint 1: InSAR data

Constraint 2: pressure data

Constraint 3: 4D seismic

Goal is to understand the importance of key uncertainties on the fracturing process:

- Layered in situ stress profile
- Fluid leakoff to reservoir / caprock
- Thermal perturbations
- Single fracture vs. multiple interacting fractures

Spectrum of fracture behavior, from single mode-I fracture to a complex multi-fracture environment

In Salah leak off test and formation integrity test data.

Task 3.2 – Assess the impact of thermal stresses caused by injection of cold CO₂ into warmer storage reservoirs on wellbore integrity

Task 3.2 – Experimental Setup at SINTEF

Lawrence Livermore National Laboratory

11 🕓

Simulation Specifications

- > Thermal and Linear Elastic Solvers
- Variable Temperature at inner radius
- Constant Temperature at outer radius
- Temperature range = 6 106 °C
- Heating or cooling rate = 1.5 2 °C/min
- Fail Strength
 - Steel-Cement interface = 1.0 Mpa
 - Cement-Rock interface = 1.5 MPa

Properties/ Material	Steel	Cement	Rock
Density (kg/m ³)	8000	2300	2500
Thermal Exp. Coeff (K-1)	12.0 x 10 ⁻⁶	7.9 x 10 ⁻⁶	10.0 x 10 ⁻⁶
Thermal Conductivity (W/m/K)	50	1	2.1
Specific Heat (J/kg/K)	450	1600	2000
Fail Strength (MPa)	200	2	6
Fracture Toughness (Mpa.m ^{1/2})	40	1	2.5

Lawrence Livermore National Laboratory

During cooling – Thermal contraction causes interfacial debonding

Adding confining pressure slows fracture propagation

During heating – Thermal expansion causes radial cracks

Temperature contours

Time = 728 s

 24 C

 40 C

Fracture propagation

Adding confining pressure slows fracture propagation

Summary and Future Work

- 3.1 Caprock Integrity
 - Implementation of an embedded fracture model in a continuum geomechanics / flow simulator
 - Future model improvements, including:
 - Multiphase effects
 - Non-isothermal conditions
 - Finalize the In Salah case study
- 3.2 Successfully modeled modes of deformation of wellbore upon heating and cooling separately
 - Update model to account for thermal cycling
- 3.3 Model SINTEF experiments (on going)
- 3.4 Refine simulation tools for sharing with industrial partners
- 3.4 Development of best practices for risk management

Synergy Opportunities

- Collaboration with SINTEF and In Salah JIP
 - Provides detailed field and experimental data to constrain models
 - Provides strong ties with industry to identify real and practical questions from an operators point of view

Lawrence Livermore National Laboratory

FEW0191

Fuel Cycles Innovations (Roger Aines)

Project Timeline for FEW0191

		Pro	ject Du	iration	Star	rt : Oct	t 1, 201	4]	End: Se	pt 30, 2	2017		Planned	Planned	Actual	Actual	Comment (notes and lengther of deviation
Task	Milestone Description*	Pro	oject Y	ear (PY)1		Р	Y 2			P	Y 3		Start	End	Start	End	Comment (notes, explanation of deviation
1		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Date	Date	Date	Date	nom plan)
	Calibrate Reactive Transport																	
1.1	Model						x			3				1-Oct-14	30-Mar-15			
	Calibrate NMR Permeability																	
1.2	Estimates						x							1-Oct-14	30-Mar-15			
	Scale Reactive Transport																	
	Simulations from the core to																	
1.3	reservoir scale										x			1-Jul-15	28-Feb-17			
	Write topical report on CO2																	
	storage potential in carbonate																	
1.4	rocks												х	1-Dec-16	30-Sep-17			
	Algorithm development and																	
2.1	testing				х									1-Oct-14	30-Sep-15			
	Array design and monitoring																	
2.2	recommendations								х					1-Oct-15	30-Sep-16			
	Toolset usability and																	
2.3	deployment												x	1-Oct-16	30-Sep-17			
	Analysis of monitoring and																	
	characterization data available																	
	from the In Salah Carbon									a. a. a.								
3.1	Sequestration Project				х									1-Dec-14	30-Sep-15			
3.2	Wellbore model development				х									1-Oct-14	30-Sep-15			
	Analysis of the full-scale																	
	wellbore integrity																	
3.3	experiments										х			1-Mar-14	28-Feb-17			
	Refining simulation tools for																	
	sharing with industrial																	
3.4	partners												х	1-Oct-16	30-Sep-17			
	Engage with industrial																	Future tasks pending discussions with
4.1	partnerships		x											1-Oct-14	28-Feb-15			industrial partners
	Develop work scope with									nen ne								
4.2	industrial partners				x									1-Mar-14	30-Sep-15			

* No fewer than two (2) milestones shall be identified per calendar year per task